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9 Abstract. This study explores the extension of I = [0, 1]-fuzzy soft

relations to Γ-fuzzy soft relations using the Γ = [0, 1]|E|-lattice. When the
parameter set E contains only one parameter, Γ = I = [0, 1], resulting in
applications similar to those found in conventional fuzzy scenarios. How-
ever, when E contains at least two parameters, the applications resemble
typical fuzzy soft situations where I = [0, 1] fuzzifies the soft set. It is
posited that the concept of an ”I = [0, 1]”-fuzzy soft relation naturally ex-

tends to a ”Γ = [0, 1]|E|”-fuzzy soft relation. This extension is significant
because it considers the individual impact of each parameter element in
the subset A of the parameter set E, rather than simultaneously assess-
ing the effects of all parameters. This generalization is illustrated, and its
relevance to decision-making-related problems is demonstrated through an
application example.
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1. Introduction17

In his seminal work [1], Zadeh introduced the concept of a fuzzy set as a general-18

ization of classical crisp sets, which has since found applications in a wide variety of19

fields involving uncertainty and imprecision. To address a different aspect of uncer-20

tainty, Molodtsov proposed the notion of a soft set in [2], which became a powerful21

framework for modeling problems where parametrization plays a central role. The22

foundational ideas of soft sets have since been applied across mathematics, computer23

science, economics, medical sciences, and decision-making.24
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Building upon these foundational concepts, Maji et al. combined fuzzy sets and25

soft sets to develop the notion of fuzzy soft sets [3], which added a nuanced layer26

of membership-based reasoning to parameterized environments. This was further27

extended by Majumdar and Samanta in [4], where fuzzy soft sets were explored in28

the context of decision-making problems. A comparison of soft sets, fuzzy sets, and29

rough sets was conducted by Aktaş and Çaǧman in [5], highlighting their respective30

strengths and intersections. Additionally, Yang et al. in [6] contributed to the31

algebraic structure of fuzzy soft sets by defining and exploring various operations.32

A fuzzy relation is classically defined as a fuzzy subset of the Cartesian product33

of crisp sets. When two such sets are involved, the result is a binary fuzzy relation,34

see [7] for foundational concepts.35

Decision-making remains a central and pressing task across all fields. As such,36

fuzzy sets, soft sets, and their combinations (such as fuzzy soft sets) have become37

instrumental in constructing decision-making models, especially where vague or in-38

complete information is involved. For practical applications in decision-making and39

related topics, see [8, 9]. In [10], Dusmanta Kumar Sut introduced the application of40

fuzzy soft relation in Decision-making using the membership values to compute max-41

imum score value, which determine decision, but in [11], Roy and Maji introduced42

the application of fuzzy soft set in Decision-making, and used the same procedure,43

which we are using in this paper. For broader discussions on soft sets and applica-44

tions, refer to [12, 13, 14, 15, 16]; and for background on lattice theory, see [17].45

In recent years, fuzzy soft sets and relations have been extended and applied in46

diverse decision-making environments. [18, 19, 20, 21, 22, 23] are some representative47

modern contributions in this direction:48

In this study, we introduce the concept of a Γ-lattice, formed by combining lattices49

indexed by parameters in a set E. This framework allows us to represent not only50

the global structure induced by the parameter set E but also the localized influence51

of each individual parameter. As an extension of the classical fuzzy soft relation52

(defined over I = [0, 1]), we propose the Γ-fuzzy soft relation, where Γ = [0, 1]|E|53

allows vector-valued membership degrees indexed by parameters.54

This extension addresses a key limitation of classical models: the inability to55

preserve parameter-specific contributions in multi-criteria settings. By capturing56

this additional structure, the proposed framework enhances parametric specializa-57

tion and interpretability. Given the critical role of structured, transparent reasoning58

in decision-making, the Γ-fuzzy soft relation is particularly well-suited for decision-59

support systems.60

2. Γ-fuzzy soft relation61

Definition 2.1 ([2]). The pair (F,A), where F maps a subset A of E to the power62

set P (U) of an initial universe U , is termed as a soft set over U .63

Definition 2.2 ([3]). A pair (G,A) is termed a fuzzy soft set, if G : A → IU ,64

where A is a subset of E, and G represents a mapping from A to the family IU ,65

encompassing all fuzzy subsets of U , where I represents the closed unit interval [0, 1].66

Definition 2.3 ([10, 16]). Let X and Y represent two initial universal sets and E
be the set of parameters, (F,A) and (G,A) denote two fuzzy soft sets over X and

2
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Y , respectively. Let IX×Y denote the set of all fuzzy subsets of X×Y . Then (H,A)
constitutes a fuzzy soft relation between (F,A) and (G,A) over X × Y , if H is a
mapping H : A→ IX×Y , defined as follows: for all e ∈ A and all (x, y) ∈ X × Y,

H(e)(x, y) = F (e)(x) ∧G(e)(y).

Definition 2.4. If Γ =
∏
e∈E

Ie with Ie = I = [0, 1] for all e ∈ E, then the Γ-fuzzy67

soft relation represents a generalization of the I-fuzzy soft relation.68

Example 2.5. Let E = {e1, e2} be a set of parameters, and X = {x1, x2}, Y =69

{y1, y2} be two sets. Let I = [0, 1], so we define Γ = I × I = [0, 1]2, which means70

each membership value in the relation is a vector in Γ indexed by (e1, e2).71

(1) The classical I-fuzzy soft relation.72

Let the I-fuzzy soft sets (F,E) and (G,E) be:73

F (e1)(x1) = 0.4, F (e1)(x2) = 0.8
F (e2)(x1) = 0.5, F (e2)(x2) = 0.7

G(e1)(y1) = 0.7, G(e1)(y2) = 0.6
G(e2)(y1) = 0.6, G(e2)(y2) = 0.5

74

Then the I-fuzzy soft relation H : E → IX×Y from (F,E) to (G,E) is75

defined by:76

H(e)(xi, yj) = min(F (e)(xi), G(e)(yj))77

78

H(e1) y1 y2
x1 min(0.4, 0.7) = 0.4 min(0.4, 0.6) = 0.4
x2 min(0.8, 0.7) = 0.7 min(0.8, 0.6) = 0.6

79

80

H(e2) y1 y2
x1 min(0.5, 0.6) = 0.5 min(0.5, 0.5) = 0.5
x2 min(0.7, 0.6) = 0.6 min(0.7, 0.5) = 0.5

81

(2) Let the Γ-fuzzy soft sets (F,E) and (G,E) be defined by:82

F (e1)(x1) = (0.4, 0.6), G(e1)(y1) = (0.7, 0.5),
F (e1)(x2) = (0.8, 0.3), G(e1)(y2) = (0.6, 0.2),

83

84

F (e2)(x1) = (0.5, 0.7), G(e2)(y1) = (0.6, 0.6),
F (e2)(x2) = (0.7, 0.4), G(e2)(y2) = (0.5, 0.3).

85

Then the Γ-fuzzy soft relation H : E → (I × I = Γ)X×Y from (F,E) to86

(G,E) is defined by:87

H(e)(xi, yj) = min(F (e)(xi), G(e)(yj)) (component-wise minimum)88

89

H(e1) y1 y2
x1 min((0.4, 0.6), (0.7, 0.5)) = (0.4, 0.5) min((0.4, 0.6), (0.6, 0.2)) = (0.4, 0.2)
x2 min((0.8, 0.3), (0.7, 0.5)) = (0.7, 0.3) min((0.8, 0.3), (0.6, 0.2)) = (0.6, 0.2)

90

91

H(e2) y1 y2
x1 min((0.5, 0.7), (0.6, 0.6)) = (0.5, 0.6) min((0.5, 0.7), (0.5, 0.3)) = (0.5, 0.3)
x2 min((0.7, 0.4), (0.6, 0.6)) = (0.6, 0.4) min((0.7, 0.4), (0.5, 0.3)) = (0.5, 0.3)

92

3
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This Example illustrate that each Γ-fuzzy soft relation value H(e)(xi, yj) is now a93

vector in Γ = [0, 1]2, where each component reflects the parameter-specific member-94

ship. This illustrates how the Γ-fuzzy soft relation retains full parametric structure95

and generalizes the classical I-fuzzy soft relation which would only assign a single96

scalar value.97

It’s evident that for any parameter ei ∈ E, both F (ei) : X → Γ and G(ei) : Y →98

Γ represent Γ-fuzzy subsets of X and Y respectively. Furthermore, all mappings99

F (ei)(x), G(ei)(y), H(ei)((x, y) : E →
⋃
e∈E

Ie = I are I-fuzzy subsets of E.100

Definition 2.6. For any A ⊂ E, consider two Γ-fuzzy soft sets (F,A) and (G,A)101

over X and Y respectively, along with the Γ-fuzzy soft relation (H,A) between102

them. For any ei ∈ A, the ordered pairs (F (ei), X) and (G(ei), Y ) are termed103

the i-projections of the fuzzy soft sets (F,A) and (G,A) respectively. Additionally,104

(H(ei), X × Y ) is referred to as the i-projection of the fuzzy soft relation (H,A).105

Let X = {x1, x2, x3, . . . , xn}, Y = {y1, y2, y3, . . . , ym}, and A ⊂ E, where A =106

{e1, e2, e3, . . . , er}. Then, the tabular forms for representing i-projections of fuzzy107

soft sets, i-projections of fuzzy soft relations, and comparison tables for i-projections108

of fuzzy soft relations, for all ei ∈ A, are constructed as shown in Table 1, Table 2,109

Table 3, and Table 4.

Table 1. i-Projections (F (ei), X), 1 ≤ i ≤ r.

X/E e1 e2 . . . er
x1 F (ei)(x1)(e1) F (ei)(x1)(e2) . . . F (ei)(x1)(er)
x2 F (ei)(x2)(e1) F (ei)(x2)(e2) . . . F (ei)(x2)(er)
...

...
...

. . .
...

xn F (ei)(xn)(e1) F (ei)(xn)(e2) . . . F (ei)(xn)(er)

Table 2. i-Projections (G(ei), Y ), 1 ≤ i ≤ r.

Y/E e1 e2 . . . er
y1 G(ei)(y1)(e1) G(ei)(y1)(e2) . . . G(ei)(y1)(er)
y2 G(ei)(y2)(e1) G(ei)(y2)(e2) . . . G(ei)(y2)(er)
...

...
...

. . .
...

ym G(ei)(ym)(e1) G(ei)(ym)(e2) . . . G(ei)(ym)(er)

110

3. Application of Γ-fuzzy soft relation in decision making111

Consider two sets: X = {x1, x2, x3, . . . , xn} and Y = {y1, y2, y3, . . . , ym}, along112

with the set of parameters E. The problem at hand involves selecting a mixed113

pair of two elements, one from each set X and Y , based on parameters in the set114

A = {e1, e2, e3, . . . , er} ⊂ E. Initially, there are mn mixed pairs to choose from115

for each parameter in the set A. However, the following algorithm simplifies the116

4
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Table 3. i-Projections (H(ei), X × Y ), 1 ≤ i ≤ r.

(X × Y )/E e1 e2 . . . er
(x1, y1) H(ei)(x1, y1)(e1) H(ei)(x1, y1)(e2) . . . H(ei)(x1, y1)(er)

...
...

...
. . .

...
(x1, ym) H(ei)(x1, ym)(e1) H(ei)(x1, ym)(e2) . . . H(ei)(x1, ym)(er)
(x2, y1) H(ei)(x2, y1)(e1) H(ei)(x2, y1)(e2) . . . H(ei)(x2, y1)(er)

...
...

...
...

. . .

(xn, ym) H(ei)(xn, ym)(e1) H(ei)(xn, ym)(e2) . . . H(ei)(xn, ym)(er)

Table 4. Comparison table for (H(ei), X × Y ), 1 ≤ i ≤ r.

X × Y (x1, y1) (x1, y2) . . . (x1, ym) (x2, y1) . . . (x2, ym) . . . (xn, ym)
(x1, y1) rx1

11 rx1
12 . . . rx1

1m rx1

1(m+1) . . . rx1

1(2m) . . . rx1

1(mn)

...
...

...
. . .

...
...

. . .
...

. . .
...

(x1, ym) rx1
m1 rx1

m2 . . . rmm rx1

m(m+1) . . . rx1

m(2m) . . . rx1

m(mn)

(x2, y1) rx2
11 rx2

12 . . . rx2
1m rx2

1(m+1) . . . rx2

1(2m) . . . rx2

1(mn)

...
...

...
. . .

...
...

. . .
...

. . .
...

(x2, ym) rx2

(2m)1 rx2

(2m)2 . . . rx2

(2m)m rx2

(2m)(m+1) . . . rx2

(2m)(2m) . . . rx2

(2m)(mn)

(x3, y1) rx3
11 rx3

12 . . . rx3
1m rx3

1(m+1) . . . rx3

1(2m) . . . rx3

1(mn)

...
...

...
. . .

...
...

. . .
...

. . .
...

(xn, ym) rxn

(nm)1 rxn

(nm)2 . . . rxn

(nm)m rxn

(nm)(m+1) . . . rxn

(nm)(2m) . . . rxn

(nm)(mn)

selection process, reducing the choices to only r mixed pairs, corresponding to the117

parameters in the set A.118

3.1. Algorithm for Selection of Mixed Pairs.119

Input: – Two Γ-fuzzy soft sets (F,A) and (G,A) representing male and female120

managerial candidates.121

– Γ-fuzzy soft relation (H,A) between (F,A) and (G,A), which measures122

the compatibility of pairs based on various managerial skills.123

– Parameters ei where ei ∈ A, representing different skills and attributes124

such as technical expertise, project management, and communication.125

Output: Suitable mixed pairs based on the selection criteria for forming a strong126

management team.127

Step 1: Define the Γ-fuzzy soft sets (F,A) and (G,A) according to the, given rules,128

where F represents the male candidates, and G represents the female can-129

didates. The comparison value rxl
pj between the pairs (xh, yd) (row) and130

(xf , yz) (column) is defined as:131

Step 2: Construct the Γ-fuzzy soft relation (H,A) between (F,A) and (G,A), which132

represents the compatibility of each pair based on the parameters defined.133

5
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Step 3: For each ei ∈ A, form the i-projections (F (ei), X) and (G(ei), Y ), which134

represent the evaluations of the male and female candidates, respectively,135

on the parameter ei.136

Step 4: For each ei ∈ A, create the i-projections (H(ei), X × Y ) of the Γ-fuzzy soft137

relation (H,A), which shows the compatibility of male and female candidates138

based on ei.139

Step 5: For each ei ∈ A, construct a comparison table corresponding to the i-140

projection (H(ei), X × Y ). The comparison value rxl
pj between the pairs141

(xh, yd) (in row) and (xf , yz) (in column), where p, f, h ∈ {1, 2, . . . , n}, j, d, z ∈142

{1, 2, . . . ,m} and A = {e1, e2, . . . , er} is defined as: rxl
pj =

r∑
k=1

(
cxl
pj

)k
, where143

(
cxl
pj

)k
=

{
1, if H(ei)(xh, yd)(ek) ≥ H(ei)(xf , yz)(ek),

0, otherwise.
144

Step 6: For each ei ∈ A, compute the row-sums W i =
∑

rxl
pj and column-sums145

Ci =
∑

rxl
jp of the comparison tables.146

Step 7: For each ei ∈ A, compute the score values Si = W i − Ci, which represent147

the relative suitability of each mixed pair for the management team.148

Step 8: Find the maximum value of Si, denoted as max{Si}, for all ei ∈ A.149

Step 9: Select the good mixed pair based on the following criteria:150

– If the selection is based solely on the parameter ei, choose the maximum151

value of Si.152

– If the selection is based on all parameters ei ∈ A, choose the best pair(s)153

from the r pairs instead of selecting from all possible mn mixed pairs.154

Step 10: Output the selected good mixed pairs according to the chosen criteria, which155

can be used for forming a balanced managerial team with complementary156

skills.157

3.2. Application Example: Selecting a Management Team for a Computer158

Company159

Let X = {x1, x2, x3, x4}, Y = {y1, y2, y3} represent sets of male and female candi-
dates for managerial positions in a computer company, respectively. Define the set
of evaluation parameters E = {e1, e2, e3, e4, e5}, where

e1
e2
e3
e4
e5

 ≡


Technical Expertise

Project Management Skills

Innovation and Creativity

Leadership and Team Management

Communication and Collaboration Skills

 .

Let A = {e1, e2, e3} be a subset of E, consisting of the most important parame-160

ters considered by the HR (Human Resources) department for forming an effective161

management team in the computer company.162

For each parameter e ∈ E, let Ie = I = [0, 1], meaning each criterion is rated on163

a scale from 0 to 1, where 0 indicates poor performance and 1 indicates excellent164

performance. The combined evaluation space is then given by Γ =
∏

e∈E Ie = I5.165

6
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The HR department applies the Algorithm 3.1 to select a balanced team of man-166

agers:167

Step 1: Define the Γ-fuzzy soft sets (F,A) and (G,A) According to the ”CV” of168

managerial pairs, the HR creates two Γ-fuzzy soft sets (F,A) and (G,A)169

over X and Y , respectively as follows:170

F (e1)(x1) = (0.3, 0.6, 0.4, 0, 0), G(e1)(y1) = (0.2, 0.6, 0.5, 0, 0),
F (e1)(x2) = (0.4, 0.5, 0.8, 0, 0), G(e1)(y2) = (0.9, 0.5, 0.3, 0, 0),
F (e1)(x3) = (0.1, 0.5, 0.2, 0, 0), G(e1)(y3) = (0.6, 0.5, 0.1, 0, 0),
F (e1)(x4) = (0.9, 0.7, 0.5, 0, 0),

F (e2)(x1) = (0.1, 0.3, 0.5, 0, 0), G(e2)(y1) = (0.8, 0.7, 0.9, 0, 0),
F (e2)(x2) = (0.8, 0.6, 0.4, 0, 0), G(e2)(y2) = (0.4, 0.3, 0.6, 0, 0),
F (e2)(x3) = (0.3, 0.5, 0.6, 0, 0), G(e2)(y3) = (0.7, 0.9, 0.4, 0, 0),
F (e2)(x4) = (0.5, 0.9, 0.7, 0, 0),

F (e3)(x1) = (0.3, 0.5, 0.7, 0, 0), G(e3)(y1) = (0.2, 0.5, 0.6, 0, 0),
F (e3)(x2) = (0.5, 0.7, 0.9, 0, 0), G(e3)(y2) = (0.2, 0.9, 0.5, 0, 0),
F (e3)(x3) = (0.5, 0.9, 0.3, 0, 0), G(e3)(y3) = (0.9, 0.5, 0.7, 0, 0),
F (e3)(x4) = (0.7, 0.1, 0.5, 0, 0).

171

Step 2: Form the Γ-fuzzy soft relation (H,A) between (F,A) and (G,A):172

H(e1)(x1, y1) = (0.2, 0.6, 0.4, 0, 0), H(e1)(x1, y2) = (0.3, 0.5, 0.3, 0, 0),
H(e1)(x1, y3) = (0.3, 0.5, 0.1, 0, 0), H(e1)(x2, y1) = (0.2, 0.5, 0.5, 0, 0),
H(e1)(x2, y2) = (0.4, 0.5, 0.3, 0, 0), H(e1)(x2, y3) = (0.4, 0.5, 0.1, 0, 0),
H(e1)(x3, y1) = (0.1, 0.5, 0.2, 0, 0), H(e1)(x3, y2) = (0.1, 0.5, 0.2, 0, 0),
H(e1)(x3, y3) = (0.1, 0.5, 0.1, 0, 0), H(e1)(x4, y1) = (0.2, 0.6, 0.5, 0, 0),
H(e1)(x4, y2) = (0.9, 0.5, 0.3, 0, 0), H(e1)(x4, y3) = (0.6, 0.5, 0.1, 0, 0),

H(e2)(x1, y1) = (0.1, 0.3, 0.5, 0, 0), H(e2)(x1, y2) = (0.1, 0.3, 0.5, 0, 0),
H(e2)(x1, y3) = (0.1, 0.3, 0.4, 0, 0), H(e2)(x2, y1) = (0.8, 0.6, 0.4, 0, 0),
H(e2)(x2, y2) = (0.4, 0.3, 0.4, 0, 0), H(e2)(x2, y3) = (0.7, 0.6, 0.4, 0, 0),
H(e2)(x3, y1) = (0.3, 0.5, 0.6, 0, 0), H(e2)(x3, y2) = (0.3, 0.3, 0.6, 0, 0),
H(e2)(x3, y3) = (0.3, 0.5, 0.4, 0, 0), H(e2)(x4, y1) = (0.5, 0.7, 0.7, 0, 0),
H(e2)(x4, y2) = (0.4, 0.3, 0.6, 0, 0), H(e2)(x4, y3) = (0.5, 0.9, 0.4, 0, 0),

H(e3)(x1, y1) = (0.2, 0.5, 0.6, 0, 0), H(e3)(x1, y2) = (0.2, 0.5, 0.5, 0, 0),
H(e3)(x1, y3) = (0.3, 0.5, 0.7, 0, 0), H(e3)(x2, y1) = (0.2, 0.5, 0.6, 0, 0),
H(e3)(x2, y2) = (0.2, 0.7, 0.5, 0, 0), H(e3)(x2, y3) = (0.5, 0.5, 0.7, 0, 0),
H(e3)(x3, y1) = (0.2, 0.5, 0.3, 0, 0), H(e3)(x3, y2) = (0.2, 0.9, 0.3, 0, 0),
H(e3)(x3, y3) = (0.5, 0.5, 0.3, 0, 0), H(e3)(x4, y1) = (0.2, 0.1, 0.5, 0, 0),
H(e3)(x4, y2) = (0.2, 0.1, 0.5, 0, 0), H(e3)(x4, y3) = (0.7, 0.1, 0.5, 0, 0).

173

Step 3: For each ei ∈ A: Form the i-projections (F (ei), X) and (G(ei), Y ) as shown174

in Table 5 and Table 6.175

7
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Table 5. i-projections (F (ei), X); i ∈ {1, 2, 3}

1−projection 2−projection 3−projection
X/A e1 e2 e3 e1 e2 e3 e1 e2 e3
x1 0.3 0.6 0.4 0.1 0.3 0.5 0.3 0.5 0.7
x2 0.4 0.5 0.8 0.8 0.6 0.4 0.5 0.7 0.9
x3 0.1 0.5 0.2 0.3 0.5 0.6 0.5 0.9 0.3
x4 0.9 0.7 0.5 0.5 0.9 0.7 0.7 0.1 0.5

Table 6. i-projections (G(ei), Y ); i ∈ {1, 2, 3}

1-projection 2-projection 3-projection
Y/A e1 e2 e3 e1 e2 e3 e1 e2 e3
y1 0.2 0.6 0.5 0.8 0.7 0.9 0.2 0.5 0.6
y2 0.9 0.5 0.3 0.4 0.3 0.6 0.2 0.9 0.5
y3 0.6 0.5 0.1 0.7 0.9 0.4 0.9 0.5 0.7

Step 4: For each ei ∈ A: Form the i-projections (H(ei), X × Y ) of the Γ-fuzzy soft176

relation (H,A) as shown in Table 7.

Table 7. i-projections (H(ei), X × Y ); i ∈ {1, 2, 3}

1-projection 2-projection 3-projection
X × Y e1 e2 e3 e1 e2 e3 e1 e2 e3
(x1, y1) 0.2 0.6 0.4 0.2 0.6 0.4 0.2 0.5 0.6
(x1, y2) 0.3 0.5 0.3 0.1 0.3 0.5 0.2 0.5 0.5
(x1, y3) 0.3 0.5 0.1 0.1 0.3 0.4 0.3 0.5 0.7
(x2, y1) 0.2 0.5 0.5 0.8 0.6 0.4 0.2 0.5 0.6
(x2, y2) 0.4 0.5 0.3 0.4 0.3 0.4 0.2 0.7 0.5
(x2, y3) 0.4 0.5 0.1 0.7 0.6 0.4 0.5 0.5 0.7
(x3, y1) 0.1 0.5 0.2 0.3 0.5 0.6 0.2 0.5 0.3
(x3, y2) 0.1 0.5 0.2 0.3 0.3 0.6 0.2 0.9 0.3
(x3, y3) 0.1 0.5 0.1 0.3 0.5 0.4 0.5 0.5 0.3
(x4, y1) 0.2 0.6 0.5 0.5 0.7 0.7 0.2 0.1 0.5
(x4, y2) 0.9 0.5 0.3 0.4 0.3 0.6 0.2 0.1 0.5
(x4, y3) 0.6 0.5 0.1 0.5 0.9 0.4 0.7 0.1 0.5

177

Step 5: For each ei ∈ A: Construct the comparison table for the i-projections178

(H(ei), X × Y ), as shown in Table 8, Table 9, and Table 10, where the179

ordered pair (xi, yj) is denoted by xiyj .180
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Table 8. Comparison table for (H(e1), X × Y )

X × Y x1y1 x1y2 x1y3 x2y1 x2y2 x2y3 x3y1 x3y2 x3y3 x4y1 x4y2 x4y3
x1y1 3 2 2 2 2 2 3 3 3 2 2 2
x1y2 1 3 3 2 2 2 3 3 3 1 2 2
x1y3 1 2 3 2 1 2 2 2 3 1 1 2
x2y1 2 2 2 3 2 2 3 3 3 2 2 2
x2y2 1 3 3 2 3 3 3 3 3 1 2 2
x2y3 1 2 3 2 2 3 2 2 3 1 1 2
x3y1 0 1 2 1 1 2 3 3 3 0 1 2
x3y2 0 1 2 1 1 2 3 3 3 0 1 2
x3y3 0 1 2 1 1 2 2 2 3 0 1 2
x4y1 3 2 2 3 2 2 3 3 3 3 2 2
x4y2 1 3 3 2 3 3 3 3 3 1 3 3
x4y3 1 2 3 2 2 3 2 2 3 1 1 3

Table 9. Comparison table for (H(e2), X × Y )

X × Y x1y1 x1y2 x1y3 x2y1 x2y2 x2y3 x3y1 x3y2 x3y3 x4y1 x4y2 x4y3
x1y1 3 3 3 1 2 1 0 1 1 0 1 1
x1y2 3 3 3 1 2 1 0 1 1 0 1 1
x1y3 2 2 3 1 2 1 0 1 1 0 1 1
x2y1 2 2 3 3 3 3 2 2 3 1 2 2
x2y2 2 2 3 1 3 1 1 2 2 0 2 1
x2y3 2 2 3 2 3 3 2 2 3 1 2 2
x3y1 3 3 3 1 2 1 3 3 3 0 2 1
x3y2 3 3 3 1 2 1 2 3 2 0 2 1
x3y3 2 2 3 1 2 1 2 2 3 0 1 1
x4y1 3 3 3 2 3 2 3 3 3 3 3 2
x4y2 3 3 3 1 3 1 2 3 2 0 3 1
x4y3 2 2 3 2 3 2 2 2 3 2 2 3

Step 6: For each ei ∈ A: Compute the row and column-sums W i =
∑

rxl
pj and181

Ci =
∑

rxl
jp of the comparison tables, as shown in Table 11, Table 12 and182

Table 13.183

Step 7: For each ei ∈ A: Compute the score values Si = W i − Ci.184

Step 8: Find the maximum value of Si, for all ei ∈ A:185

max{S1} = 17 is corresponding to the suitable managerial pair (x4, y1).186

max{S2} = 26, also is corresponding to the suitable managerial pair (x4, y1).187

max{S3} = 19 is corresponding to the suitable managerial pair (x2, y3).188

Step 9: Choose the good suitable managerial Pair:189

If the HR selects the team based on ”Technical Expertise” or ”Project190

Management Skills, then (x4, y1).191

If the HR selects the team based on ”Innovation and Creativity, then192

(x2, y3).193
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Table 10. Comparison table for (H(e3), X × Y )

X × Y x1y1 x1y2 x1y3 x2y1 x2y2 x2y3 x3y1 x3y2 x3y3 x4y1 x4y2 x4y3
x1y1 3 3 1 3 2 1 3 2 2 3 3 2
x1y2 2 3 1 2 2 1 3 2 2 3 3 2
x1y3 3 3 3 3 2 2 3 2 2 3 3 2
x2y1 3 3 1 3 2 1 3 2 2 3 3 2
x2y2 2 3 1 2 3 1 3 2 2 3 3 2
x2y3 3 3 3 3 2 3 3 2 3 3 3 2
x3y1 2 2 1 2 1 1 3 2 2 2 2 1
x3y2 2 2 1 2 2 1 3 3 2 2 2 1
x3y3 2 2 2 2 1 2 3 2 3 2 2 1
x4y1 1 2 0 1 2 0 2 2 1 3 3 2
x4y2 1 2 0 1 2 0 2 2 1 3 3 2
x4y3 1 2 1 2 2 1 2 2 2 3 3 3

Step 10: Output the selected good mixed suitable managerial pair according to the194

chosen criteria: The HR chooses the good suitable managerial pairs accord-195

ing to all parameters from the set {(x2, y3), (x4, y1)}.196

Table 11. Comparison of Row-Sums and Column-Sums for (H(e1), X × Y )

Row-Sums Column-Sums Score Values
28 14 14
27 24 3
22 30 −8
28 23 5
29 22 7
24 28 −4
19 32 −13
19 32 −13
17 36 −19
30 13 17
31 19 12
25 26 −1
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Table 12. Comparison of Row-Sums and Column-Sums for (H(e2), X × Y )

Row-Sums Column-Sums Score Values
17 30 −13
17 30 −13
15 36 −21
28 17 11
20 30 −10
27 18 9
25 19 6
23 25 −2
20 27 −7
33 7 26
25 22 3
28 17 11

Table 13. Comparison of Row-Sums and Column-Sums for (H(e3), X × Y )

Row-Sums Column-Sums Score Values
28 25 3
26 30 −4
31 15 16
28 26 2
27 23 4
33 14 19
21 33 −12
23 25 −2
24 24 0
19 33 −14
19 33 −14
24 22 2

4. Clarification on Γ-fuzzy soft relations vs. I-fuzzy soft relations197

in decision-making198

While the classical I-fuzzy soft relation approach evaluates candidate pairs using199

scalar degrees under each parameter, the Γ-fuzzy soft relation offers a more nuanced200

representation. It preserves parameter-wise evaluations as vectors in [0, 1]r, allowing201

better specialization and interpretation of each parameter’s effect on the decision.202

In addition to that in traditional fuzzy soft sets, a mapping F : A→ IX assigns to203

each parameter e ∈ A a fuzzy subset F (e) : X → [0, 1]. This means that each object204

x ∈ X receives a single membership value under each parameter e. However, in205

decision-making scenarios where multiple parameters jointly affect the outcome, this206

structure lacks the ability to represent interactions between parameters explicitly.207

In contrast, a Γ-fuzzy soft set employs mappings of the form F (e) : X → Γ, where208

Γ = [0, 1]|E|. Here, the membership of each x ∈ X is a vector representing degrees209
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of association with each parameter in E. This richer representation allows decision-210

makers to analyze each parameter’s influence separately and then aggregate the211

results systematically.212

The following is as an alternative Example, which illustrates how classical I-fuzzy213

soft relation is used in Decision-Making.214

Example 4.1. Let X = {x1, x2, x3} and Y = {y1, y2, y3} be sets of male and215

female managerial candidates, respectively. Let A = {e1, e2, e3} represent evaluation216

parameters:217

• e1: Experience218

• e2: Communication skills219

• e3: Leadership ability220

Step 1: Define fuzzy soft sets (F,A) and (G,A) over X and Y , respectively:221

F (e1) x1 x2 x3

0.6 0.8 0.4
F (e2) x1 x2 x3

0.5 0.7 0.6
F (e3) x1 x2 x3

0.7 0.6 0.5
222

G(e1) y1 y2 y3
0.7 0.5 0.6

G(e2) y1 y2 y3
0.6 0.8 0.4

G(e3) y1 y2 y3
0.8 0.5 0.7

223

Step 2: Construct the fuzzy soft relation H : A→ IX×Y by:224

H(e)(xi, yj) = min(F (e)(xi), G(e)(yj))225

Step 3: Form the relation tables H(ek), k = 1, 2, 3.226

For e1:227

H(e1) y1 y2 y3
x1 0.6 0.5 0.6
x2 0.7 0.5 0.6
x3 0.4 0.4 0.4

228

Similarly, compute and tabulate H(e2) and H(e3):229

H(e2) =

y1 y2 y3
x1 0.5 0.5 0.4
x2 0.6 0.7 0.4
x3 0.6 0.6 0.4

H(e3) =

y1 y2 y3
x1 0.7 0.5 0.7
x2 0.6 0.5 0.6
x3 0.5 0.5 0.5

230

Step 4: Compute score values for each pair (xi, yj):231

S(xi, yj) =
1

3

3∑
k=1

H(ek)(xi, yj)232
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Pair Score
(x1, y1) 0.6+0.5+0.7

3 = 0.6
(x1, y2) 0.5+0.5+0.5

3 = 0.5
(x1, y3) 0.6+0.4+0.7

3 ≈ 0.567
(x2, y1) 0.7+0.6+0.6

3 = 0.633
(x2, y2) 0.5+0.7+0.5

3 = 0.567
(x2, y3) 0.6+0.4+0.6

3 = 0.533
(x3, y1) 0.4+0.6+0.5

3 = 0.5
(x3, y2) 0.4+0.6+0.5

3 = 0.5
(x3, y3) 0.4+0.4+0.5

3 ≈ 0.433

233

Step 5: Choose the pair(s) with the highest score.234

maxS(xi, yj) = 0.633 for pair (x2, y1).235

Hence, the best managerial pair according to this classical fuzzy soft relation model236

is (x2, y1).237

This serves as a comparison baseline to evaluate the additional capabilities and238

refinements offered by the Γ-fuzzy soft relation method.239

5. Conclusion240

In this paper, we introduced a generalized model of fuzzy soft relations by ex-241

tending the classical scalar framework I = [0, 1] to a parameter-wise structure242

Γ = [0, 1]|E|. This generalization enables each parameter in a decision-making envi-243

ronment to contribute distinctly and explicitly through vector-valued membership244

degrees. We developed the corresponding theoretical foundation based on a newly245

defined Γ-lattice and proposed a dedicated decision-making algorithm that leverages246

this enhanced structure.247

Through comprehensive numerical examples, we demonstrated how the proposed248

Γ-fuzzy soft relation model preserves detailed parameter-specific influence, which249

is otherwise aggregated and obscured in classical fuzzy soft relations. For clear250

contrast, we presented a full parallel example under the classical framework using251

the same data. This side-by-side comparison confirmed the advantage of our model252

in providing greater interpretability and parametric sensitivity.253

The conclusion drawn from this generalization is quite insightful and can be sum-254

marized as follows:255

(1) When the parameter set E consists of only one element, the Γ-fuzzy soft256

relation reduces to the traditional fuzzy case with scalar values in I = [0, 1].257

In this case, the application coincides with the classical I-fuzzy decision-258

making method.259

(2) When E includes two or more parameters, and the interval I = [0, 1] is260

still used for fuzzification, the relation behaves like a standard I-fuzzy soft261

relation, involving aggregated effects of multiple parameters.262

(3) The true benefit of our proposed Γ-fuzzy soft relation arises when each ele-263

ment of E is treated independently in the construction of Γ = [0, 1]|E|. This264
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enables a finer, parameter-wise evaluation and allows for more nuanced and265

flexible decision-making.266

This work not only proposes a refined decision-making model but also paves the267

way for extensions involving interval-valued, hesitant, or intuitionistic fuzzy soft sets.268

Thus, the proposed Γ-fuzzy soft relation framework enhances both theoretical269

expressiveness and practical decision-support capabilities in complex, multi-criteria270

environments.271
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[16] J. Močkoř and P. Hurt́ık, Approximations of fuzzy soft sets by fuzzy soft relations with image308

processing application, Soft Comput. 25 (2021) 6915–6925. DOI:10.1007/s00500-021-05769-3309

[17] Garrett Birkhoff, Lattice Theory, American Mathematical Soc. 25 (2) (1940).310
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